Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648116

RESUMO

In this review, we highlight studies where whole genome sequencing, comparative genomics and population genomics have provided unprecedented insights into past and ongoing pathogen evolution. These include new understanding of adaptive evolution of secretion systems and their effectors. We focus on Xanthomonas pathosystems that have seen intensive study and improved our understanding of pathogen emergence and evolution, particularly in the context of host specialization: citrus canker, bacterial blight of rice, and bacterial spot of tomato and pepper. Across pathosystems, pathogens appear to follow a pattern of bursts of evolution and diversification that impact host adaptation. There remains a need for studies on the mechanisms of host range evolution and genetic exchange among closely related but differentially host-specialized species, and to start moving beyond the study of specific strain and host cultivar pairwise interactions to thinking about these pathosystems in a community context.

2.
Genome Biol Evol ; 16(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38648506

RESUMO

The genus Xanthomonas has been primarily studied for pathogenic interactions with plants. However, besides host and tissue-specific pathogenic strains, this genus also comprises nonpathogenic strains isolated from a broad range of hosts, sometimes in association with pathogenic strains, and other environments, including rainwater. Based on their incapacity or limited capacity to cause symptoms on the host of isolation, nonpathogenic xanthomonads can be further characterized as commensal and weakly pathogenic. This study aimed to understand the diversity and evolution of nonpathogenic xanthomonads compared to their pathogenic counterparts based on their cooccurrence and phylogenetic relationship and to identify genomic traits that form the basis of a life history framework that groups xanthomonads by ecological strategies. We sequenced genomes of 83 strains spanning the genus phylogeny and identified eight novel species, indicating unexplored diversity. While some nonpathogenic species have experienced a recent loss of a type III secretion system, specifically the hrp2 cluster, we observed an apparent lack of association of the hrp2 cluster with lifestyles of diverse species. We performed association analysis on a large data set of 337 Xanthomonas strains to explain how xanthomonads may have established association with the plants across the continuum of lifestyles from commensals to weak pathogens to pathogens. Presence of distinct transcriptional regulators, distinct nutrient utilization and assimilation genes, transcriptional regulators, and chemotaxis genes may explain lifestyle-specific adaptations of xanthomonads.

3.
Access Microbiol ; 6(1)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38361655

RESUMO

Xanthomonas euvesicatoria the primary causal agent of bacterial spot of pepper (BSP), poses a significant global challenge, resulting in severe defoliation and yield losses for pepper growers. We present the whole genome sequences of eight X. euvesicatoria strains associated with BSP in Vietnam. These genomes contribute to representation of pepper production regions in the global sample of X. euvesicatoria genomes, enabling the development of precise global disease management strategies.

4.
Phytopathology ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302452

RESUMO

The widespread presence of tolerance to copper in Xanthomonas species has resulted in the need to develop alternative approaches to control plant diseases caused by xanthomonads. In recent years, nanotechnological approaches have resulted in the identification of novel materials to control plant pathogens. While many metal-based nanomaterials have shown promise for disease control, an important question relates to the mode of action of these new materials. In this study we used several approaches such as SEM, propidium monoazide qPCR, epifluorescence microscopy and RNA sequencing to elucidate the mode of action of a Cu/Zn hybrid nanoparticle against copper tolerant strains of Xanthomonas euvesicatoria. We demonstrate that Cu/Zn, unlike Kocide 3000, did not activate copper resistance genes (i.e. copA and copB) in the copper-tolerant bacterium, but functioned by disrupting the bacterial cell structure and perturbing important biological processes such as cell respiration and chemical homeostasis.

5.
Microbiol Spectr ; 12(1): e0285223, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38018859

RESUMO

IMPORTANCE: T6SS has received attention due to its significance in mediating interorganismal competition through contact-dependent release of effector molecules into prokaryotic and eukaryotic cells. Reverse-genetic studies have indicated the role of T6SS in virulence in a variety of plant pathogenic bacteria, including the one studied here, Xanthomonas. However, it is not clear whether such effect on virulence is merely due to a shift in the microbiome-mediated protection or if T6SS is involved in a complex virulence regulatory network. In this study, we conducted in vitro transcriptome profiling in minimal medium to decipher the signaling pathways regulated by tssM-i3* in X. perforans AL65. We show that TssM-i3* regulates the expression of a suite of genes associated with virulence and metabolism either directly or indirectly by altering the transcription of several regulators. These findings further expand our knowledge on the intricate molecular circuits regulated by T6SS in phytopathogenic bacteria.


Assuntos
Sistemas de Secreção Tipo VI , Xanthomonas , Sistemas de Secreção Tipo VI/genética , Virulência/genética , Xanthomonas/genética , Xanthomonas/metabolismo , Perfilação da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
6.
Phytopathology ; 114(1): 47-60, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37505057

RESUMO

Xanthomonas spp. infect a wide range of annual and perennial plants. Bacterial blight in young seedlings of Eucalyptus spp. in Indonesia was originally identified as X. perforans. However, these strains failed to elicit a hypersensitive response (HR) on either tomatoes or peppers. Two of the strains, EPK43 and BCC 972, when infiltrated into tomato and pepper leaves, failed to grow to significant levels in comparison with well-characterized X. euvesicatoria pv. perforans (Xp) strains. Furthermore, spray inoculation of 'Bonny Best' tomato plants with a bacterial suspension of the Eucalyptus strains resulted in no obvious symptoms. We sequenced the whole genomes of eight strains isolated from two Eucalyptus species between 2007 and 2015. The strains had average nucleotide identities (ANIs) of at least 97.8 with Xp and X. euvesicatoria pv. euvesicatoria (Xeu) strains, both of which are causal agents of bacterial spot of tomatoes and peppers. A comparison of the Eucalyptus strains revealed that the ANI values were >99.99% with each other. Core genome phylogeny clustered all Eucalyptus strains with X. euvesicatoria pv. rosa. They formed separate clades, which included X. euvesicatoria pv. alangii, X. euvesicatoria pv. citrumelonis, and X. euvesicatoria pv. alfalfae. Based on ANI, phylogenetic relationships, and pathogenicity, we designated these Eucalyptus strains as X. euvesicatoria pv. eucalypti (Xee). Comparative analysis of sequenced strains provided unique profiles of type III secretion effectors. Core effector XopD, present in all pathogenic Xp and Xeu strains, was absent in the Xee strains. Comparison of the hrp clusters of Xee, Xp, and Xeu genomes revealed that HrpE in Xee strains was very different from that in Xp and Xeu. To determine if it was functional, we deleted the gene and complemented with the Xee hrpE, confirming it was essential for secretion of type III effectors. HrpE has a hypervariable N-terminus in Xanthomonas spp., in which the N-terminus of Xee strains differs significantly from those of Xeu and Xp strains.


Assuntos
Eucalyptus , Xanthomonas , Sistemas de Secreção Tipo III , Filogenia , Doenças das Plantas/microbiologia
7.
Phytopathology ; 114(1): 241-250, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37432099

RESUMO

Xanthomonas perforans-the dominant causal agent of bacterial leaf spot of tomato-is an emerging pathogen of pepper, indicative of a potential host expansion across the southeastern United States. However, studies of the genetic diversity and evolution of X. perforans from pepper remain limited. In this study, the whole-genome sequences of 35 X. perforans strains isolated from pepper from four fields and two transplant facilities across southwest Florida between 2019 and 2021 were used to compare genomic divergence, evolution, and variation in type III secreted effectors. Phylogenetic analysis based on core genes revealed that all 35 X. perforans strains formed one genetic cluster with pepper and tomato strains from Alabama and Turkey and were closely related to strains isolated from tomato in Indiana, Mexico, and Louisiana. The in planta population growth of tomato strains isolated from Indiana, Mexico, Louisiana, and Turkey in pepper leaf mesophyll was on par with pepper X. perforans and X. euvesicatoria strains. Molecular clock analysis of the 35 Florida strains dated their emergence to approximately 2017. While strains varied in copper tolerance, all sequenced strains harbored the avrHah1 transcription activation-like effector located on a conjugative plasmid, not previously reported in Florida. Our findings suggest that there is a geographically distributed lineage of X. perforans strains on tomato that has the genetic background to cause disease on pepper. Moreover, this study clarifies potential adaptive variants of X. perforans on pepper that could help forecast the emergence of such strains and enable immediate or preemptive intervention.


Assuntos
Metagenômica , Xanthomonas , Filogenia , Doenças das Plantas/microbiologia , Genômica , Xanthomonas/genética
8.
Mol Plant Microbe Interact ; 37(2): 93-97, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38105425

RESUMO

Rapidly evolving bacterial pathogens pose a unique challenge for long-term plant disease management. In this study, we investigated the types and rate of mutations in bacterial populations during seasonal disease epidemics. Two phylogenetically distinct strains of the bacterial spot pathogen, Xanthomonas perforans, were marked, released in tomato fields, and recaptured at several time points during the growing season. Genomic variations in recaptured isolates were identified by comparative analysis of their whole-genome sequences. In total, 180 unique variations (116 substitutions, 57 insertions/deletions, and 7 structural variations) were identified from 300 genomes, resulting in the overall host-associated mutation rate of ∼0.3 to 0.9/genome/week. This result serves as a benchmark for bacterial mutation during epidemics in similar pathosystems. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Doenças das Plantas , Xanthomonas , Estações do Ano , Doenças das Plantas/microbiologia , Bactérias/genética , Genoma Bacteriano/genética , Mutação , Xanthomonas/genética
9.
PLoS Pathog ; 19(12): e1011876, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38100539

RESUMO

Xanthomonas citri pv. citri (Xcc) causes the devastating citrus canker disease. Xcc is known to have been introduced into Florida, USA in at least three different events in 1915, 1986 and 1995 with the first two claimed to be eradicated. It was questioned whether the Xcc introduction in 1986 has been successfully eradicated. Furthermore, it is unknown how Xcc has spread throughout the citrus groves in Florida. In this study, we investigated the population structure of Xcc to address these questions. We sequenced the whole genome of 343 Xcc strains collected from Florida groves between 1997 and 2016. Our analysis revealed two distinct clusters of Xcc. Our data strongly indicate that the claimed eradication of the 1986 Xcc introduction was not successful and Xcc strains from 1986 introduction were present in samples from at least 8 counties collected after 1994. Importantly, our data revealed that the Cluster 2 strains, which are present in all 20 citrus-producing counties sampled in Florida, originated from the Xcc introduction event in the Miami area in 1995. Our data suggest that Polk County is the epicenter of the dispersal of Cluster 2 Xcc strains, which is consistent with the fact that three major hurricanes passed through Polk County in 2004. As copper-based products have been extensively used to control citrus canker, we also investigated whether Xcc strains have developed resistance to copper. Notably, none of the 343 strains contained known copper resistance genes. Twenty randomly selected Xcc strains displayed sensitivity to copper. Overall, this study provides valuable insights into the introduction, eradication, spread, and copper resistance of Xcc in Florida.


Assuntos
Citrus , Xanthomonas , Cobre , Filogenia , Xanthomonas/genética , Doenças das Plantas/genética
10.
Plant Dis ; 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990522

RESUMO

Bacterial spot of tomato (BST), predominantly caused by Xanthomonas perforans (Xp) in Florida, is one of the most devastating diseases in hot, humid environments. Bacterial resistance to copper-based bactericides and antibiotics makes disease management extremely challenging. This necessitates alternative solutions to manage the disease. In this study, we used two novel hybrid copper and magnesium nanomaterials noted as magnesium double-coated (Mg-Db) and magnesium-copper (Mg-Cu), to manage BST. In in vitro experiments, no viable cells were recovered following 4 h exposure to 500 µg/ml of both Mg-Db and Mg-Cu, while 100 and 200 µg/ml required 24 h of exposure for complete inhibition. In viability assay using live/dead cell straining method and epifluorescence microscopy, copper tolerant Xp cells were killed within 4 h by both Mg-Cu and Mg-Db nanomaterials at 500 µg/ml, but not by copper hydroxide (Kocide 3000). In the greenhouse, Mg-Db and Mg-Cu at 100-500 µg/ml significantly reduced BST severity compared to micron-sized commercial Cu bactericide Kocide 3000 and the growers' standard (copper hydroxide + mancozeb) (P < 0.05). In field studies, Mg-Db and Mg-Cu nanomaterials significantly reduced disease severity in two out for field trials. Mg-Db at 500 µg/ml reduced BST severity by 34% compared to the non-treated control without affecting yield in Fall, 2020. The use of hybrid nanomaterials at the highest concentrations (500 µg/ml) used in the field experiments can reduce copper use by 90% compared to the growers' standard. In addition, there was no phytotoxicity observed with the use of hybrid nanomaterials in the field. These results suggest the potential of novel magnesium-copper based hybrid nanomaterials to manage copper-tolerant bacterial pathogens.

11.
Plant Dis ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37822097

RESUMO

Bacterial leaf spot of cucurbits (BLS) is an emerging disease in the southeastern United States which is capable of causing widespread outbreaks under conducive conditions. Historically attributed solely to the bacterium Pseudomonas syringae pv. lachrymans, recent studies have identified additional P. syringae pathovars as causal agents of the disease. To further investigate the identity and diversity of P. syringae strains associated with BLS in the southeastern United States, forty-seven bacterial strains were recovered from symptomatic cucurbits from Florida, Alabama, and Georgia. Strains were characterized using the LOPAT testing scheme, fluorescence, and pathogenicity to watermelon and squash seedlings. Thirty-eight fluorescent strains underwent whole genome sequencing and were further characterized with 16s rRNA, four gene MLSA phylogeny, and average nucleotide identity analysis. Thirty-four isolates were identified as members of the P. syringae species complex, including P. syringae sensu stricto (12), P. alliivorans (12), P. capsici (9), and P. viridiflava (1). An additional four isolates were found to belong to the Pseudomonas genus outside of the syringae species complex, though they did not share 95% or greater average nucleotide identity to any validly published species and are believed to be new species. These results reveal an unpredicted level of diversity of Pseudomonas strains associated with BLS in the region and show the benefits of whole genome sequencing for strain identification. Identification of P. capsici, which is capable of causing disease at higher temperatures than P. syringae, as a causal agent of BLS may also affect management strategies in the future.

12.
Plant Dis ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537792

RESUMO

Boston fern (Nephrolepis exaltata) samples were submitted by a nursery operation in Florida separately to the University of Florida Plant Diagnostic Center (UFPDC, Gainesville, FL) and to the North Carolina State University Plant and Pest Diagnostic Lab (NCSU PPDL, Raleigh, NC) in October 2021. Symptoms included tan spots on pinnules, some of which progressed into pinnule blight (Fig. S1). Bacterial streaming was noted from samples in both labs. Leaf spot margins were excised, macerated in sterile tap water, then streaked onto nutrient agar (NA) plates and incubated for 48 h at 27°C. Individual representative colonies that were opaque, creamy white, mucoid, and round with smooth margins were transferred and streaked onto additional NA plates. One strain from each lab (G21-1742, UFPDC and NC40101, NCSU PPDL) was selected for subsequent characterization. A suspension of each strain was adjusted to 108 CFU/mL and infiltrated into tobacco and tomato leaves, and confluent necrosis was observed 72 h after infiltration. The isolates were Gram-negative, oxidase-positive, HR-positive on tomato and tobacco, aerobic, not pectolytic, and nonfluorescent on King's Medium B. DNA was extracted from G21-1742 using Qiagen Stool kit (Qiagen cat#51604) and the 16S rRNA gene from strain G21-1742 was amplified using 16SrRNA universal primers UP1 (5'-TACGTGCCAGCAGCCGCGGTAATA-3') and UP2 (5'-AGTAAGGAGGGTATCCAACCGCA-3') (Kuppusamy et al. 2014). The amplicon was sequenced and submitted to NCBI (Genbank Accession No. OR004801). BLASTn analysis of 16S rRNA of G21-1742 resulted in 99.7% sequence identity to the type strain of Herbaspirillum huttiense subsp. huttiense ATCC 14670T (Genbank Accession NR_024698). The 16S rRNA sequence of NC40101 was identical to that of G21-1742. To determine if the G21-1742 strain was pathogenic, Boston fern plants were inoculated by suspending bacterial cells in tap water from a 24h culture grown on NA, adjusting the suspension to 108 CFU/mL and spraying the suspension on one three-week old frond from each of three healthy Boston fern plants. A second frond from each plant was sprayed with sterile tap water. Each treated frond was individually sealed in a clear plastic bag for 24h at approximately 25°C. Inoculated plants remained on the greenhouse bench after the plastic bags were removed. The inoculation experiment was repeated once. After 4 days, tan spots were observed on pinnules of inoculated plants that were identical to the original submitted samples, while no symptoms developed on water-inoculated plants. Bacterial strains were reisolated from symptomatic plants and were morphologically identical to G21-1742. The 16S rRNA sequence of the reisolated strain was identical to G21-1742. Additionally, we conducted MLSA analysis using 12 housekeeping genes (See Table S2 for housekeeping genes and accession numbers) from the fern strains and the corresponding housekeeping genes for the type strains of 13 Herbaspirillum species, which placed the fern strains most closely with H. huttiense (see Fig. S2). This is the first known report of a Herbaspirillum sp. on Boston fern, an important ornamental crop, that renders the plants aesthetically unsaleable. Previously, a Herbaspirillum sp. was reported in Florida to cause a leaf spot and blight on greenhouse grown tomato seedlings (Obradovic et al. 2007).

13.
Access Microbiol ; 5(6)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37424560

RESUMO

Bacterial spot is an economically significant disease in tomato and pepper-producing countries globally. We report the whole-genome sequence of 11 Xanthomonas strains associated with bacterial spot disease on pepper, tomato and eggplant in the Southeastern Anatolia Region, Turkey. This genomic information can be used as a reference to study the genetic diversity of these species and contribute to illuminating pathogen evolution with respect to host specificity.

14.
Plant Biotechnol J ; 21(10): 2019-2032, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37421233

RESUMO

Citrus bacterial canker (CBC), caused by Xanthomonas citri subsp. citri (Xcc), causes dramatic losses to the citrus industry worldwide. Transcription activator-like effectors (TALEs), which bind to effector binding elements (EBEs) in host promoters and activate transcription of downstream host genes, contribute significantly to Xcc virulence. The discovery of the biochemical context for the binding of TALEs to matching EBE motifs, an interaction commonly referred to as the TALE code, enabled the in silico prediction of EBEs for each TALE protein. Using the TALE code, we engineered a synthetic resistance (R) gene, called the Xcc-TALE-trap, in which 14 tandemly arranged EBEs, each capable of autonomously recognizing a particular Xcc TALE, drive the expression of Xanthomonas avrGf2, which encodes a bacterial effector that induces plant cell death. Analysis of a corresponding transgenic Duncan grapefruit showed that transcription of the cell death-inducing executor gene, avrGf2, was strictly TALE-dependent and could be activated by several different Xcc TALE proteins. Evaluation of Xcc strains from different continents showed that the Xcc-TALE-trap mediates resistance to this global panel of Xcc isolates. We also studied in planta-evolved TALEs (eTALEs) with novel DNA-binding domains and found that these eTALEs also activate the Xcc-TALE-trap, suggesting that the Xcc-TALE-trap is likely to confer durable resistance to Xcc. Finally, we show that the Xcc-TALE-trap confers resistance not only in laboratory infection assays but also in more agriculturally relevant field studies. In conclusion, transgenic plants containing the Xcc-TALE-trap offer a promising sustainable approach to control CBC.


Assuntos
Citrus , Xanthomonas , Efetores Semelhantes a Ativadores de Transcrição/genética , Efetores Semelhantes a Ativadores de Transcrição/metabolismo , Citrus/genética , Citrus/microbiologia , Xanthomonas/genética , Regiões Promotoras Genéticas/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
15.
Front Plant Sci ; 14: 1061803, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37275256

RESUMO

Bacterial spot caused by Xanthomonas euvesicatoria is a major disease of pepper (Capsicum annuum L.) in warm and humid production environments. Use of genetically resistant cultivars is an effective approach to manage bacterial spot. Two recessive resistance genes, bs5 and bs6, confer non-race-specific resistance against bacterial spot. The objective of our study was to map these two loci in the pepper genome. We used a genotyping-by-sequencing approach to initially map the position of the two resistances. Segregating populations for bs5 and bs6 were developed by crossing susceptible Early CalWonder (ECW) with near-isogenic lines ECW50R (bs5 introgression) or ECW60R (bs6 introgression). Following fine-mapping, bs5 was delimited to a ~535 Kbp interval on chromosome 3, and bs6 to a ~666 Kbp interval in chromosome 6. We identified 14 and 8 candidate resistance genes for bs5 and bs6, respectively, based on predicted protein coding polymorphisms between ECW and the corresponding resistant parent. This research enhances marker-assisted selection of bs5 and bs6 in breeding programs and is a crucial step towards elucidating the molecular mechanisms underlying the resistances.

16.
World J Microbiol Biotechnol ; 39(8): 219, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37269424

RESUMO

Compared to the well-studied model legumes, where symbiosis is established via root hair entry, the peanut is infected by Bradyrhizobium through the crack entry, which is less common and not fully understood. Crack entry is, however, considered a primitive symbiotic infection pathway, which could be potentially utilized for engineering non-legume species with nitrogen fixation ability. We utilized a fluorescence-labeled Bradyrhizobium strain to help in understanding the crack entry process at the cellular level. A modified plasmid pRJPaph-bjGFP, harboring the codon-optimized GFP gene and tetracycline resistance gene, was created and conjugated into Bradyrhizobium strain Lb8, an isolate from peanut nodules, through tri-parental mating. Microscopic observation and peanut inoculation assays confirmed the successful GFP tagging of Lb8, which is capable of generating root nodules. A marking system for peanut root potential infection sites and an optimized sample preparation protocol for cryostat sectioning was developed. The feasibility of using the GFP-tagged Lb8 for observing crack entry was examined. GFP signal was detected at the nodule primordial stage and the following nodule developmental stages with robust GFP signals observed in infected cells in the mature nodules. Spherical bacteroids in the root tissue were visualized at the nodules' inner cortex under higher magnification, reflecting the trace along the rhizobial infection path. The GFP labeled Lb8 can serve as an essential tool for plant-microbe studies between the cultivated peanut and Bradyrhizobium, which could facilitate further study of the crack entry process during the legume-rhizobia symbiosis.


Assuntos
Bradyrhizobium , Fabaceae , Arachis , Simbiose , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Fixação de Nitrogênio , Verduras , Nódulos Radiculares de Plantas/genética
17.
Plant Dis ; 107(12): 3933-3942, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37368450

RESUMO

Bacteriophages are biocontrol agents used to manage bacterial diseases. They have long been used against plant pathogenic bacteria; however, several factors impede their use as a reliable disease management strategy. Short-lived persistence on plant surfaces under field conditions results mainly from rapid degradation by exposure to ultraviolet (UV) light. Currently, there are no effective commercial formulations that protect phages from UV. The phage ΦXp06-02-1, which lyses strains of the tomato bacterial spot pathogen Xanthomonas perforans, was mixed with different concentrations of the nanomaterial N-acetylcysteine surface-coated manganese-doped zinc sulfide (NAC-ZnS; 3.5 nm). In vitro, NAC-ZnS at 10,000 µg/ml formulated phage, when exposed to UV for 1 min, provided statistically equivalent plaque-forming unit (PFU) recovery as phages that were not exposed to UV. NAC-ZnS had no negative effect on the phage's ability to lyse bacterial cells under in vitro conditions. NAC-ZnS reduced phage degradation over time in comparison with the nontreated control, whereas N-acetylcysteine-zinc oxide (NAC-ZnO) had no effect. In fluorescent light, without UV exposure, NAC-ZnO-formulated phages were more infective than NAC-ZnS-formulated phages. The nanomaterial-phage mixture did not cause any phytotoxicity when applied to tomato plants. Following exposure to sunlight, the NAC-ZnS formulation improved phage persistence in the phyllosphere by 15 times compared with nonformulated phages. NAC-ZnO-formulated phage populations were undetectable within 32 h, whereas NAC-ZnS-formulated phage populations were detected at 103 PFU/g. At 4 h of sunlight exposure, NAC-ZnS-formulated phages at 1,000 µg/ml significantly reduced tomato bacterial spot disease severity by 16.4% compared with nonformulated phages. These results suggest that NAC-ZnS can be used to improve the efficacy of phages for bacterial diseases.


Assuntos
Infecções Bacterianas , Bacteriófagos , Solanum lycopersicum , Óxido de Zinco , Acetilcisteína/farmacologia , Bactérias
18.
Plants (Basel) ; 12(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37176889

RESUMO

Bacterial spot of tomato is among the most economically relevant diseases affecting tomato plants globally. In previous studies, non-formulated magnesium oxide nanoparticles (nano-MgOs) significantly reduced the disease severity in greenhouse and field conditions. However, the aggregation of nano-MgO in liquid suspension makes it challenging to use in field applications. Therefore, we formulated two novel MgO nanomaterials (SgMg #3 and SgMg #2.5) and one MgOH2 nanomaterial (SgMc) and evaluated their physical characteristics, antibacterial properties, and disease reduction abilities. Among the three Mg nanomaterials, SgMc showed the highest efficacy against copper-tolerant strains of Xanthomonas perforans in vitro, and provided disease reduction in the greenhouse experiments compared with commercial Cu bactericide and an untreated control. However, SgMc was not consistently effective in field conditions. To determine the cause of its inconsistent efficacy in different environments, we monitored particle size, zeta potential, morphology, and crystallinity for all three formulated materials and nano-MgOs. The MgO particle size was determined by the scanning electron microscopy (SEM) and dynamic light scattering (DLS) techniques. An X-ray diffraction (XRD) study confirmed a change in the crystallinity of MgO from a periclase to an Mg(OH)2 brucite crystal structure. As a result, the bactericidal activity correlated with the high crystallinity present in nano-MgOs and SgMc, while the inconsistent antimicrobial potency of SgMg #3 and SgMg #2.5 might have been related to loss of crystallinity. Future studies are needed to determine which specific variables impair the performance of these nanomaterials in the field compared to under greenhouse conditions. Although SgMc did not lead to significant disease severity reduction in the field, it still has the potential to act as an alternative to Cu against bacterial spot disease in tomato transplant production.

19.
Phytopathology ; 113(8): 1394-1398, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37097444

RESUMO

Due to the continuous use of copper containing bactericides without effective alternative bactericides, copper resistance has become more prevalent in plant pathogens, including Xanthomonas euvesicatoria pv. perforans (formerly Xanthomonas perforans), a predominant cause of bacterial leaf spot disease of tomato and pepper in the Southeastern United States. Previously, reports of copper resistance have been associated with a large conjugative plasmid. However, we have characterized a copper resistance genomic island located within the chromosome of multiple X. euvesicatoria pv. perforans strains. The island is distinct from a previously described chromosomally encoded copper resistance island in X. vesicatoria strain XVP26. Computational analysis revealed the genomic island to contain multiple genes associated with genetic mobility, including both phage-related genes and transposase. Among copper-tolerant strains of X. euvesicatoria pv. perforans isolated from Florida, the majority of strains were found to have the copper resistance chromosomally encoded rather than plasmid borne. Our results suggest that this copper resistance island may have two modes of horizontal gene transfer and that chromosomally encoded copper resistance genes may provide a fitness advantage over plasmid-borne resistance.

20.
Plant Dis ; 107(10): 2978-2985, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36856653

RESUMO

Bacterial spot caused by Xanthomonas spp. is a significant disease that challenges pepper growers worldwide and is particularly severe in a hot and humid environment. Understanding the pathogen's population biology is critical for sustainable disease management. The goal of this study was to characterize the species, race, and bactericide sensitivity of bacterial spot-associated Xanthomonas collected from pepper in Florida. A survey of pepper production fields in southwest Florida between 2019 and 2021-covering two counties, eight farms, and two transplant facilities-resulted in the isolation of 542 Xanthomonas euvesicatoria and 35 Xanthomonas perforans strains. Four races were identified on pepper, of which most strains were race P1 (42%), race P6 (26%), race P3 (24%), and less common was race P4 (8%). All X. perforans strains were characterized as race P1 and showed a compatible reaction on tomato. Sixty-two and 96% of strains were sensitive to copper sulfate and streptomycin, respectively. One farm that did not use copper to manage the disease contained only copper-sensitive strains and was the only farm with race P3 strains. Strains were assayed for starch hydrolysis activity of which a third of X. euvesicatoria strains were strongly amylolytic, a characteristic not typically observed in X. euvesicatoria. All X. perforans strains produced bacteriocins against X. euvesicatoria in vitro. The Xanthomonas population causing bacterial spot on pepper in southwest Florida is diverse and dynamic; thus, regular monitoring provides pertinent information to plant breeders and growers for designing disease management strategies.


Assuntos
Piper nigrum , Xanthomonas , Florida , Cobre , Doenças das Plantas/microbiologia , Sulfato de Cobre , Xanthomonas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...